STMICROELECTRONICS, UNIVERSITY OF GRENOBLE/LIG LABORATORY

STMicroelectronics "l '

LIG
University of Grenoble life.augmented L | G

Supporting Parallel Component Debugging
in Embedded Systems
Using GDB Python Interfaces.

Kevin Pouget, Miguel Santana, Vania Marangozova-Martin
and Jean-Francois Mehaut

GNU Tools Cauldron 2012, July 9th_11th
Slide 1/29

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Context

Embedded System Development

e High-resolution multimedia app. = high performance expectations.

e H.265 HEVC
e augmented reality,
° ...

e Sharp time-to-market constraints

= Important demand for
e powerful parallel architectures
e MultiProcessor on Chip (MPSoC)
e convenient programming methodologies
e Component-Based Software Engineering
o efficient verification and validation tools
e Qur problematic

Slide 2/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Context

MultiProcessor on Chip (MPSoC)

e Parallel architecture
e more difficult to program

e Maybe heterogeneous
e hardware accelerators,
e GPU-like accelerators (OS-less)
e Embedded system
e constrained environment,
e on-board debugging complicated
— performance debugging only
o limited-scale functional debugging on simulators

L&y

augmented

Slide 3/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Context

Component-Based Software Engineering

e Focus on design of independent building blocks

e Applications built with interconnected components

e Allows the adaptation of the application architecture according to
runtime constraints

e Runnable components able to exploit MPSoC parallelism

L&y

augmented

Slide 4/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Agenda
@ Component Debugging Challenges
® Component-Aware Interactive Debugging
© Feature Details
O Python Implementation

O Conclusion

L&y

augmented

Slide 5/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONIC UNIVERSITY OF GHENOBLE/LIG LABORATORY

Agenda

@ Component Debugging Challenges

L&y

augmented

Slide 6/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Component-based applications are

e various set of components deployed during the execution

e components are dynamically inter-connected

S7i

augmented

Slide 7/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Component-based applications are

e various set of components deployed during the execution

e components are dynamically inter-connected

[1 — 1
1 I —>1 I | ——>
1 | | |

I— | I

S7i

augmented

Slide 7/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Component-based applications are

e various set of components deployed during the execution

e components are dynamically inter-connected

— 1 — 1
1 I —>1 I | —>1 |
1 | | |

I— | IN—

s7i

augmented

Slide 7/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Components with one another

e their execution is driven by interface communications

e complex framework-dependent steps between an interface call and
its execution

Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component Debugging Challenges

Components with one another
e their execution is driven by interface communications

e complex framework-dependent steps between an interface call and
its execution

EXﬁtcu)Elton interesting for
conte i+ developers
———1

— 1
| I —> I]
|]
&
57

augmented

Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component Debugging Challenges

Components with one another
e their execution is driven by interface communications
e complex framework-dependent steps between an interface call and

its execution

Execution
context complex
: (framework
! dependent)
— 1 — 1
C 33— C—Hh>C
| I I]
1 |

&r

augmented

Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component Debugging Challenges

Components with one another
e their execution is driven by interface communications
e complex framework-dependent steps between an interface call and

its execution

Execution
context interesting
for developers:
— — '
I —>1 1 |
I ! I |
L1 L |

&r

auvgmentec
Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component Debugging Challenges

Components with one another
e their execution is driven by interface communications

e complex framework-dependent steps between an interface call and
its execution

Execution .) comp.
context @ interesting not
: 1 running
e | ——— ;
| I —>l I] _ |
|]
I |

&

augmented

Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component Debugging Challenges

Components with one another

e their execution is driven by interface communications

e complex framework-dependent steps between an interface call and
its execution

very
Execution complex
context %@
———1 : i
l —>
I]
I—

br

augmented

Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component Debugging Challenges

Components with one another

e their execution is driven by interface communications

e complex framework-dependent steps between an interface call and
its execution

very
Execution complex
context %@

_II — 1
1

> |
| |
I— | I
&1

Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component Debugging Challenges

Components with one another
e their execution is driven by interface communications

e complex framework-dependent steps between an interface call and
its execution

Execution
context @ interesting @
— —1 ——1. -
l —>] |
l I ! |
1 |

&r

augmented

Slide 8/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Information over the components

e a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Information over the components

e a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Information over the components

e a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Information over the components

e a corrupted data may be carried over various component before
triggering a visible error

Slide 9/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Information over the components

e a corrupted data may be carried over various component before
triggering a visible error

V4

s7i

augmented

Slide 9/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component Debugging Challenges

Information over the components

e a corrupted data may be carried over various component before
triggering a visible error

s7i

augmented

Slide 9/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_y1th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Agenda

® Component-Aware Interactive Debugging

L&y

augmented

Slide 10/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

augmented

Slide 11/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

e Show application architecture evolutions

e component deployment
e interface binding
o ...

augmented

Slide 11/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

e Show application architecture evolutions
e component deployment
e interface binding
o ..
e Follow the execution flow(s) over the component graph

e runnable component execution,
e execution triggered by an interface call
o ...

augmented

Slide 11/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Component-Aware Interactive Debugging

Objective: Bring the debugger closer to the component model

e Show application architecture evolutions

e component deployment
e interface binding
o ...

e Follow the execution flow(s) over the component graph

e runnable component execution,
e execution triggered by an interface call
o ...

e Track inter-component data exchanges

e message route history,
e message- or interface-based breakpoints
o ...

L&y

augmented

Slide 11/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

i\

Component-Aware
Debugger

<initialization>

Breakpoint on <component creation>

@ Source-level @@@ @@@
Debugger @@@ @@@

" Breakpoint at @ 0x126fd

Execution Platform

"I —> Interface binding @ Execution context [interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

i\

Component-Aware
Debugger

<initialization>

Breakpoint on <interface binding>

@ Source-level @@@ @@@
Debugger @@@ @@@

" Breakpoint at @ Oxaab25

Execution Platform

"I —> Interface binding @ Execution context [interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

i\

Component-Aware
Debugger

<initialization>

Breakpoint on <component execution>

@ Source-level @@@ @@@
Debugger @@@ @@@

" Breakpoint at @ Oxdeb42

Execution Platform

"I —> Interface binding @ Execution context [interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation
= Detect and interpret key events in the component framework

Set breakpoint on <component execution>
Start execution

Component-Aware
Debugger

Start execution

@ Source-level @@@ @@@
Debugger @@@ @@@

Start execution

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

L\

Component-Aware
Debugger

\ Breakpoint hit on <component creation>

@ Source-level @@@ @@@
Debugger @@@ @@@

Breakpoint hit at @ 0x126fd

Execution Platform

"I —> Interface binding @ Execution context [interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

\

Component-Aware
Debugger

HOST

1

@ Source-level @@@ @@@
Debugger @@@ @@@

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

\

Component-Aware
Debugger

HOST

-
@ Source-level @@@ @@@
T DD | DD

Continue execution

Continue execution

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

)

Component-Aware
Debugger

HOST

1

@ Source-level @@@ @@@
Debugger @@@ @@@

Breakpoint hit at @ 0x126fd

A

Breakpoint hit on <component creation>

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

\

Component-Awars

Debugger :'\F:

HOST

@ Source-level @@@ @@@
e | D DD | DD

Execution Platform

"I —> Interface binding @ Execution context [interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation
= Detect and interpret key events in the component framework

)\

Component-Aware

Debugger EF:

HOST 1

I e e B

A

Breakpoint hit on I<component creation>

@ Source-level @@@ @@@
Debugger @@@ @@@

Breakpoint hit at @ 0x126fd

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

)\

Component-Aware

Debugger '] Com
HOST 9 P

1 2

| = | ==

@ Source-level @@@ @@@
Debugger @@@ @@@

Execution Platform

c_-’I —> Interface binding @ Execution context [interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation
= Detect and interpret key events in the component framework

)

Component-Aware

Debugger EF: o

HOST A >

=

Breakpoint hit on <interface bind'ing>

@ Source-level @@@ @@@
e | e0on| 00

Breakpoint hit at @ Oxaab256

Execution Platform

CJYI —> Interface binding @ Execution context [interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

\

Component-Aware

Debugger Con!‘p__l Comp
Tl e=]

'
Continue execution
'

HOST

@ Source-level @@@ @@@
Debugger @@@ @@@

Continue execution

Execution Platform

Lyj —> 'nterface binding €] Execution context [interface [component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

\

Component-Aware
Debugger

Comlp Comp
! —ﬁ’:_

Breakpoint hit on <interface bind'ing>

HOST

@ Source-level @@@ @@@
Debugger @@@ @@@

Breakpoint hit at @ Oxaab256

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation

= Detect and interpret key events in the component framework

\

Component-Aware
Debugger

Comlp Comp
2

! —ﬁ._

HOST

'
Continue execution

@ Source-level @@@ @@@
Debugger @@@ @@@

Continue execution

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Component-Aware Interactive Debugging
Implementation
= Detect and interpret key events in the component framework

k T Stopped on <Component 1 execution>

Component-Aware
Debugger

Comlp Comp
2
'® 1 |

Breakpoint hit on '<component execution>

HOST

@ Source-level @@@ @@@
Debugger @@@ @@@

Breakpoint hit at @ Oxdeb42

Execution Platform

"I —> Interface binding @ Execution context [T interface E Component

augmented

Slide 12/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

UNIVER TY OF GRENOBLE, IG LABORATOR

© Feature Details

L&y

augmented

Slide 13/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE’,"/LIG LABORATORY

Feature Details

Proof-of-concept environment

P2012 Fabric
[Platform 2012 [Y

Host L
ST MPSoC research platform = Gluster 0 Cluster 1
| PROR\ = L2
e Heterogeneous % ‘ -
'Vvv,‘ff,'. o o "".
e 4x16 CPU OS-less comp. fabric l """"" !
Cluster 2 Cluster 3

7P2012

L&y

augmented

Slide 14/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Feature Details

Proof-of-concept environment

NPM g

e P2012 component framework Gluster0 Cluster 1

e Provides communication
components and interface ST
Cluster2 ' Cluster 3

—P2012

ST MPSoC research platform
o Heterogeneous
e 4x16 CPU OS-less comp. fabric

L&y

augmented

Slide 14/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Feature Details

Proof-of-concept environment

)

DB

e Adapted to low level debugging @ poss [eeos
oo poog

e Large user community

NPM sy .

Cluster 0 Clt1
e P2012 component framework PR —— 5 —
v .

e Provides communication E. I pREpEe,
components and interface \ Cluster 2 Cluster 3

P201

ST MPSoC research platform
e Heterogeneous

e 4x16 CPU OS-less comp. fabric
1572

augmented

|

Slide 14/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Feature Details

Proof-of-concept environment

e Adapted to low level debugging

e Large user community

Native Programming Model

e P2012 component framework

e Provides communication
components and interface

Platform 2012

ST MPSoC research platform
e Heterogeneous

e 4x16 CPU OS-less comp. fabric
&7

oo

eoor [pood
oo oo

NPM

L)

x&gPZOlZ

x86/Posix Simulator

Cluster 0 Cluster 1
L2

Cluster 2 Cluster 3

Slide 14/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE’,"/LIG LABORATORY

Feature Details
Case study: Debugging a Pyramidal Feature Tracker

Host Cluster 1
e part of an augmented reality IEEEZE S
application Host T
: Task I —]
e analyzes video frames to track o

o o . IterOpticalFlowCalc
|nterest|ng features motion Component

Cluster 2

augmented

Slide 15/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/’/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

List components and their interfaces

Host Fabric
Host SmoothAndSample
Task Component @

(gdb) info component +connections
#1 Host[31272]

DMAPush/0Ox... <DMA> srcPullBuffer Component... #2

DMAPull/Ox... <DMA> dstPushBuffer Component... #2
* #2 Component [SmoothAndSampleProcessor.so]

srcPullBuffer <DMA> DMAPush/Ox... Host[31272]

dstPullBuffer <DMA> DMAPull/Ox... Host[31272]

51

Slide 16/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONI UNIVERSITY OF GHENOBLE/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric
Comp. [| Component
A

=> Component binding

Message 1:
Component A # Message created

Ly

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

Comp. [| Component
A

=> Component binding

Message 1:
Component A # Message created
Component A::Interface A.1 # Message sent

L&y

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric
Comp. [| Component
A

=> Component binding

Message 1:
Component A # Message created
Component A::Interface A.1 # Message sent

L&y

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

Comp. [] Component
A

=> Component binding

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent
Component B::Interface B.1 # Message received

L&y

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

@szp.i H

=> Component binding

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent
Component B::Interface B.1 # Message received
Message 2:

Component B # Message created

L&y

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

@szp.i H

=> Component binding

[| Component

Message 1:
Component A # Message created
Component A::Interface A.1 # Message sent
Component B::Interface B.1 # Message received
Message 2:
Component B # Message created

Lys Component B::Interface B.2 # Message sent

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

@szp.? |-

=> Component binding

|] Component

Component

K

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent
‘;7' Component C::Interface C.1 # Message received

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

@szp.i H

=> Component binding

Component

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent

Component B::Interface B.1 # Message received

Message 2:

Component B # Message created

Component B::Interface B.2 # Message sent
‘;7' Component C::Interface C.1 # Message received

augmented

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

@szp.? I-

=> Component binding
= Routing table entry

e messages can be logically aggregated with user-defined routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent
Component B::Interface B.1 # Message received
Message—2+

Component—B—#llessage——created

Component B::Interface B.2 # Message sent
Component C::Interface C.1 # Message received

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about messages

Host DMA Fabric

p s

Comp.
A

=> Component binding
Routing table entry

e messages can be logically aggregated with user-defined routing tables:

Message 1:

Component A # Message created

Component A::Interface A.1 # Message sent
Component B::Interface B.1 # Message received
Component B::Interface B.2 # Message sent
Component C::Interface C.1 # Message received

)

e

Slide 17/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/’/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about interface activity

Host Fabric

srcPullBuffer >
Host | [dstTmpPullBuffer] ~ |] SmoothAndSample
Task | I srcTmppuliBuffer] | Component

| f dstPullBuffer | 7| I] @

(gdb) info components +counts

#2 CommComponent [SmoothAndSampleProcessor.so]
srcPullBuffer #35 msgs
dstTmpPushBuffer #36 msgs
srcTmpPullBuffer #35 msgs
dstPushBuffer #34 msgs

Slide 18/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/’/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about interface activity

Host Fabric

srcPullBuffer >
Host | [dstTmpPullBuffer] ~ |] SmoothAndSample
Task | I srcTmppuliBuffer] | Component

| f dstPullBuffer | 7| I] @

(gdb) info components +counts

#2 CommComponent [SmoothAndSampleProcessor.so]
srcPullBuffer #35 msgs
dstTmpPushBuffer #36 msgs
srcTmpPullBuffer #35 msgs
dstPushBuffer #34 msgs

o7 e allowed us to find a bug in the application
(msg sent to the wrong interface)

Slide 18/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Case study: Debugging a Pyramidal Feature Tracker

Information about interface activity

Excerpt from a 300 lines-of-code file

/* Compute last lines if necessary */
if (tmp_size > 0) {

/* Transmit the last lines computed */
CALL(srcTmpPullBuffer, release)(...);
CALL (dstTmpPushBuffer, push)(...);

L&y

augmented

Slide 19/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

TMICROELE UNIVERSITY OF GRENOBLE/LIG LABORATORY

Agenda

O Python Implementation

L&y

augmented

Slide 20/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Python Implementation

Detect and Interpret Key Events in the Component Framework

L&y

augmented

Slide 21/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Python Implementation

Detect and Interpret Key Events in the Component Framework

Detect e Internal breakpoints

e no apparent execution stop
e no screen notification

— Python notification for framework events

L&y

augmented

Slide 21 /29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Python Implementation

Detect and Interpret Key Events in the Component Framework

Detect e Internal breakpoints
e no apparent execution stop
e no screen notification

— Python notification for framework events

Key Events e New components, new binding
e Component execution trigger
e Message created, sent, received, ...

Slide 21 /29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Python Implementation

Detect and Interpret Key Events in the Component Framework

Detect e Internal breakpoints
e no apparent execution stop
e no screen notification

— Python notification for framework events

Key Events e New components, new binding
Component execution trigger
Message created, sent, received, ...

Interpret o Debug information (DWARF)
e API + Calling conventions
— (almost!) everything we need

l!ﬁsome implementation-dependent bits still remain ...

Slide 21 /29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Python Implementation
Debug Toolbox

Function breakpoints

Internal breakpoints triggered at the execution of a function
= catch input, updated and output parameters
e stop, do_after, data = prepare_before(self)
e stop = prepare_after(self, data)

s7i

augmented

Slide 22/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Python Implementation
Debug Toolbox

Function breakpoints

Internal breakpoints triggered at the execution of a function
= catch input, updated and output parameters
e stop, do_after, data = prepare_before(self)
e stop = prepare_after(self, data)
o ‘ e s s
“Thou shalt not alter the execution state of the inferior’
(gdbdoc 23,2,2,20)
— gdb.FinishBreakpoint instead

Slide 22/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Python Implementation
Debug Toolbox

Function breakpoints

Internal breakpoints triggered at the execution of a function
= catch input, updated and output parameters
e stop, do_after, data = prepare_before(self)
e stop = prepare_after(self, data)

® - [X? b R)
“Thou shalt not alter the execution state of the inferior’
(gdbdoc 23,2,2,20)
— gdb.FinishBreakpoint instead
NPM_instantiateComponent (&cmpl_handle, typel, nb_procs);
NPM_instantiateComponent (&cmp2_handle, type2, nb_procs);

NPM_instantiateFIFOBuffer(&fifo_handle,
cmpl_handle, "src_itf",

cmp2_handle, "dst_itf");
‘7]

ammaies

Slide 22/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’,"/LIG LABORATORY

Python Implementation
Debug Toolbox
User-level Multithreading

e threading implemented with longjmp/setjmp
— invisible to GDB

222z

OS Kernel

Kernel-level User-level

L&y

augmented

Slide 23/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

REGISTERS = ("$esp", "$ebp", "$eip")
def save_current_thread():
return [gdb.parse_and_eval(reg) for reg in REGISTERS]

Slide 23/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

REGISTERS = ("$esp", "$ebp", "$eip")
def save_current_thread():
return [gdb.parse_and_eval(reg) for reg in REGISTERS]

def switch_inactive_thread(next_):
jmbuf = next_["context"][0]["__jmpbuf"]
gdb.execute("set $esp=Js" ¥ jmbuf [JB_SP])
gdb.execute("set $ebp=Js" 7% jmbuf [JB_BP])
gdb.execute("set $eip=__longjmp")
gdb.execute("flushregs")

L&y

augmented

Slide 23/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

REGISTERS = ("$esp", "$ebp", "$eip")
def save_current_thread():
return [gdb.parse_and_eval(reg) for reg in REGISTERS]

def switch_inactive_thread(next_):
jmbuf = next_["context"][0]["__jmpbuf"]
gdb.execute("set $esp=Js" ¥ jmbuf [JB_SP])
gdb.execute("set $ebp=Js" 7% jmbuf [JB_BP])
gdb.execute("set $eip=__longjmp")
gdb.execute("flushregs")

def reload_current_thread(stop_regs):
for reg_name, reg_val in map(REGISTERS, stop_regs):
gdb.execute("set Ys=/s" % (reg_name, str(reg_val))

L&y

augmented

Slide 23/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF

Python Implementation
Debug Toolbox

User-level Multithreading

(gdb) info processors
#1 Processor DM4 1
#2 Processor 1 Cluster 1
* #3 Processor 2 Cluster 1
#4 Processor 1 Cluster 2

(gdb) info components
#1 Host

* #2 Component Al
#3 Component A2

~ #4 Component Bl

~ #5 Component B2

L&y

augmented

GHENOBLE’,"/LIG LABORATORY

// user-level threads
// <=> simulated processors

// component not scheduled
// current component

// component not schedulable
// <=> no execution context

Slide 24/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE’,"/LIG LABORATORY

Python Implementation
Debug Toolbox

User-level Multithreading

(gdb) component 3

[Switching to sleeping Component A2 #3]

(gdb) where

#0 0x470b07a0 <n __longjmp () from /usr/lib/libc.so.6
#1 0zf7fe3f20 in contextSwitch (old, new)

#2 0xf7fe406d in schedule_next_execution_context ()
#3 0xe7eb7838 in schedlext ()

#9 0zddb5e23d in outputBuffer_fetchNextBuffer (...)
#10 0xdd5d26c8 in rtmMaster (...)
#11 0xdd5d307d in thread_main (...)

L&y

augmented

Slide 25/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Python Implementation
Debug Toolbox

User-level Multithreading

o far from being perfect
e no coordination with GDB thread capabilities

o user-level thread debugging is possible with Python

o a Thread_db library (e.g., User-Level Thread db?) could make it
more standard and reliable

ISTE

aamenes ULDB: a debugging API for user-level thread libraries, K. Pouget et al, MTAAP 10

Slide 26/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Python Implementation
Entity Tracking

On framework function breakpoint:

@ identify operation and parameters
e which function?

Component-Aware.

Debugger = [comp gdb.Breakpoint.location
= — o o API for parameters
T Breakpoint hit on <interface bind:ing> ° cmp_py = lOOkUP_table [ha-ndle]

5

Source-level @@@ @@@
Debugger @@@ @@@

T Breakpoint hit at @ Oxaab256

Execution Platform |

L&y

augmented

Slide 27/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Python Implementation
Entity Tracking

On framework function breakpoint:

@ identify operation and parameters
e which function?

Component-Aware.

Debugger = [comp gdb.Breakpoint.location
HOST . >
— — — o API for parameters
: TBreakpoint hit on'l<interface bind:ing> ° cmp_py = lOOkUP_table [ha-ndle]
: ; ‘ identify active component
Source-level @@@ @@@ 9 y p
Debugger ° ased on curren rea rocessor
D00 | 00D based t thread/p

T Breakpoint hit at @ Oxaab256

Execution Platform |

Slide 27/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Python Implementation
Entity Tracking

On framework function breakpoint:

@ identify operation and parameters
e which function?

Component-Aware.

Debugger = [comp gdb.Breakpoint.location
HOST >
— — — o API for parameters
: TBreakpointhiton'<interface bind‘ing> ° cmp_py = 100kup_table [ha-ndle]
: : : identify active component
@ i sl Lo © b;/sed on curre [?c thread/processo
Debu [)
ebugger @@@ @@@ ‘ n curren r Pr r
TBreakpointhitat@oxaabZSG © update internal state accordingly, e.g.,

e create a component/link object

® move a message btw components
o ...

Execution Platform |

Slide 27/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Python Implementation
Entity Tracking

On framework function breakpoint:

@ identify operation and parameters
e which function?

C°"‘SZE32§§¥’“ = [comp gdb.Breakpoint.location
HOST . >
— — — o API for parameters
T Breakpoint hit on <interface bind:ing> ° cmp_py = 100kup_table [ha-ndle]
: : identify active component
Source-level @@@ @@@ 9 y p
Debugger ° ased on curren rea rocessor
DD | DD based t thread/p

© update internal state accordingly, e.g.,

| e create a component/link object
e move a message btw components
o ...

T Breakpoint hit at @ Oxaab256

| Execution Platform

O check user breakpoints/catchpoint

Slide 27/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

UNIVER TY OF GRENOBLE, IG LABORATOR

O Conclusion

L&y

augmented

Slide 28/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GHENOBLE/LIG LABORATORY

Conclusion

e Debugging dynamic component application is challenging
e Lack of high level information about components framework

e Our work: bring debuggers closer to the component model
o better understanding application behavior
o keep focused on bug tracking

L&y

augmented

Slide 29/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Conclusion

e Debugging dynamic component application is challenging
e Lack of high level information about components framework

e Our work: bring debuggers closer to the component model
o better understanding application behavior
o keep focused on bug tracking

e Proof-of-concept: GDB and its Python interface
e interface good enough to build real improvements in Python
e a few missing bits contributed to the project
® gdb.FinishBreakpoint
e multiple breakpoint hits
e gdb.selected_inferior()

Slide 29/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

STMICROELECTRONICS, UNIVERSITY OF GRENOBLE’/'/LIG LABORATORY

Conclusion

Debugging dynamic component application is challenging
Lack of high level information about components framework

Our work: bring debuggers closer to the component model
o better understanding application behavior
o keep focused on bug tracking

Proof-of-concept: GDB and its Python interface
e interface good enough to build real improvements in Python
e a few missing bits contributed to the project
® gdb.FinishBreakpoint
e multiple breakpoint hits
e gdb.selected_inferior()

e Going further programming-model aware debugging
e OpenCL
o Dataflow execution model
S 7

augmented

Slide 29/29 — kevin.pouget@st.com — Supporting Parallel Component Debugging. — GNU Tools Cauldron 2012, July oth_11th

	Component Debugging Challenges
	Component-Aware Interactive Debugging
	Feature Details
	Python Implementation
	Conclusion

